

РАТАН – 600 Отчет о научной и технической работе 2020-II

Наблюдательные программы 2020

				Наблюдательные программы						-0	120	RATAN				
	201	.4	201	15	2016	20	2017 201		20	19	2020	ading, %	80	-		
	29)	24	26		3	36 29		.9 29		30	scope lo	60	 -		
Органи					рганиз	ации-	поль	зовател	าห			tele	40 20 20	- 3ar - 3 ar		
	201	.4	201	15	2016	20	17	2018 2		19	2020	ŀ	15			
	14	Ļ	11	1	13	1	8	20	2	0	25		14 13 12			
	год	М вс вр.	акс. Эзм. р., ч	Фан	ктич. вре всего	емя работы, ч сторон. польз.		загру телесі	зка копа	в и тре	нтересах тьих лиц	Z	10 9 8 7 6 5 4 3			
	2014	8	784	8	8022	46	00	91%			57%		2 1	2010 2		
	2015	8	760	8	8054		6054 42		28	929	%		52%		22	
	2016	8	784	7	7992	54	15	919	1% 68%			20 18) — Коли 8 — -			
	2017	8	231	7	7973	52	30	979	%		66%		10 14 8			
	2018	8	760	7	7812	56	02	909	%		71%	7	1 program	0 Russi nitern		
	2019	6	445	!	5968	50	09	929	%		77%		- (total		
	2020	7	404	(5864	48	05	929	%		70%		2			

year

Наблюдательные программы

<u>Внегалактические:</u>

1. Исследование ядер активных галактик на РАТАН-600 и РСДБ (АКЦ ФИАН).

2. Narrow-Line Seyfert 1 Galaxies (Metsahovi Radio Observatory).

3. Исследование долговременной переменности внегалактических источников в области склонений 11-18 гр. (ГАИШ МГУ).

- 4. Многочастотный мониторинг переменности блазаров на длительных временных масштабах, (ШАО Китайской АН, Китай).
- 5. Исследование радиогалактик FR0 (САО РАН).

6. Исследование радиосвойств далеких квазаров (САО РАН).

7. Радиосвойства гидроксильных мегамазеров ОНМ (Университет Гуйчжоу, Китай).

8. IceCube триггер: ежемесячный мониторинг на РАТАН-600 активных галактик - новых кандидатов в источники нейтрино высоких энергий, Троицкий С.В. (ИЯИ РАН). 9. РАТАН-600 в многоканальной астрономии: полная

выборка РСДБ-компактных струй в ядрах галактик как индикаторов нейтрино высоких энергий, Ковалев Ю.А. (АКЦ ФИАН, МФТИ).

<u>Галактические</u>:

1. Мониторинг микроквазаров - галактических рентгеновских двойных звезд со струйными выбросами (САО и др.).

Солнце:

- 1. Исследование магнитосферы активной области в широком диапазоне радиоволн (САО РАН);
- 2. Исследование сверхслабой солнечной активности на микроволнах (ИСЗФ СО РАН);
- Совместные исследования солнечных флоккул в линии CallK и в микроволновом диапазоне на ГАС ГАО и РАТАН-600 (ГАС ГАО РАН);
- Развитие методов определения физических условий во вспышечно-активных областях на Солнце (СПбГУ);
- 5. Структура и эволюция активных областей Солнца (University of Ioannina);
- 6. Корреляционный анализ между предвспышечным сигналом Call K и радиовспышками (CAO);
- Совместные исследования хромосферы и переходной области солнечных пятен на интерферометре ALMA и PATAH-600 (CAO, NJIT);
- 8. Наблюдения микровспышек на Солнце (САО, Уорикский Университет).

Аппаратурно-методические:

1. Испытания антенной системы Ю+П в режиме сопровождения (САО РАН).

2. Поиск быстрых радиовсплесков* (САО).

	Континуум 1-22 ГГц (Обл. №1, 2)	ССПК 3-18 ГГц (Обл. №3)	Многолучевой 4.7 ГГц (Обл. №5)
План	48266	1440	9215
Потери	3390 (<mark>7.0 %</mark>)	95 (<mark>6.6 %</mark>)	497 (<mark>5.3 %</mark>)
Погода	2696 (<mark>5.5 %</mark>)	40 (<mark>2.8 %</mark>)	425 (<mark>4.6</mark> %)
Аппаратура	26 (<mark>0.1 %</mark>)	7 (0.4 %)	1 (<mark>0.01</mark> %)
Антенна	84 (<mark>0.2 %</mark>)	1 (0.1%)	0 (0 %)
Прочее	584 (<mark>1.2 %</mark>)	47 (<mark>3.3 %</mark>)	71 (<mark>0.7</mark> %)

f _o (GHz)	Δf ₀ (GHz)	ΔF (mJy/bea m)	HPBW _x sec	AR arcsec
22.3	2.5	70	1.0	11
11.2	1.4	20	1.4	16
8.2	1.0	25	2.0	22
4.7	0.6	5	3.2	36
2.25	0.08	40	7.2	80
1.28	0.06	175	15.4	170

f _o (GHz)	Δf _o (GHz)	ΔF (mJy/beam)	HPBW _x sec	AR arcsec
22.3	2.5	88	1.5	16.5
11.2	1.0	20	2.0	25
4.8	0.6	11	4.8	50
2.25*	0.08	80	11	121

Методы 1-2: Измерение спектральной плотности потока радиоизлучения космических объектов в диапазоне 1.3-21.7 ГГц на приемноизмерительных комплексах вторичных зеркал №1 и №2 (континуум).

parameters	
frequency range	3.0 - 18 GHz
frequency	80 channels - 100 MHz;
resolution levels	10 channels - 1500 MHz;
time resolution	0.0025 sec ⁻¹
sensitivity by flux density	0.01 s.f.u.
dynamic range	> 60 dB
task	the Sun

Метод 3: Измерение интенсивности и поляризации радиоизлучения дискретных радиоисточников и Солнца в частотном диапазоне 3-18 ГГц на ССПК-2016 (вторичное зеркало №3).

f _o (GHz)	Δf _o (MHz)	ΔF (mJy/beam)	HPBW _x sec	AR arcsec
4.40-4.55	0.15	10	3.2	35
4.55-4.70	0.15	10	3.2	35
4.70-4.85	0.15	10	3.2	35
4.85-5.00	0.15	10	3.2	35

Метод 4: Измерение спектральной плотности потока радиоисточников в диапазоне частот 4.4-5.0 ГГц с высоким временным разрешением (60 µs) на многолучевом спектральном комплексе (вторичное зеркало №5).

Конференция пользователей, САО РАН, 2021 Радиометры континуума модульного типа: 8, 14.4 и 22 ГГц

ЗD сборочный чертеж модуля 14 ГГц

- Внедрение модульных радиометров диапазона 22 и 14 ГГц. Разработка и согласование с производителем (НПФ «Микран») технического задания.

- Проектирование и изготовление двухдиапазонной дециметровой рупорной антенны с совмещенным фазовым центром (1.4 и 2.3 ГГц).

- Приобретение спектроанализаторов для радиометров дециметровых диапазонов 1.4 ГГц и 2.3 ГГц.

параметр	Значение 22 ГГц	Значение 14 ГГц
Полоса частот	21.0-23.5 ГГц	13.4-15.4 ГГц
Коэффициент шума	Не более 1.2 дБ (290 К), 100 К	Не более 1 дБ при физической температуре 290 К.
1/f шум	Отсутствие на масштабах времени 10 секунд (СВЧ часть радиометра, детектор, усилитель низкой частоты, система регистрации)	10 секунд
Полосно- пропускающий фильтр	Затухание не хуже 50 дБ при отстройке от центральной частоты на ширину полосы	Затухание не хуже 40 дБ при отстройке от центральной частоты на ширину полосы.
Входной тракт	Волноводный (11x5,5) с направленным ответвителем калибровочного сигнала -25 дБ	Коаксиальный, SMA или 3,5 мм.

ГШ на 22 ГГц

Антикоррозийная защита:

Общая площадь поверхности металлоконструкций телескопа - ~ 110 000 м² Обработка поверхности: 2020 – 27000 м²; 2019 г. - ~9700 м²; 2018 г. - ~ 4600 м²; 2017 г. - ~ 1800 м²; Итого: ~ 43 000 м².

Работы по замене электроприводного оборудования

- Конструкторские работы по адаптации моторредуктора с полым валом под задачу перемещения элемента антенны. Изготовлен комплект деталей узла сопряжения, выполнена контрольная сборка. Проведены испытания мотор-редуктора (2600 ч).
- По результатам испытаний и проведенных измерений осевой нагрузки на выходной вал редуктора, внесены согласованные с производителем изменения в конструкцию подшипниковой пары выходного вала редуктора, обеспечивающие наработку редуктора до 45 тысяч часов.
- 3. 93 комплекта мотор-редукторов и переходных узлов.
- Заказ партии кожуха защитного для мотор-редуктора 100 шт.
- 5. Выбор марки кабеля судового трех видов для частичной замены в 2021 г.

Замена электроприводного оборудования и АСУ Плоского отражателя РАТАН-600

Nº	параметр	новый	старый
1.	КПД, %	98	<92
2.	Число оборотов	16	8
3.	Скорость (доля)	0.007-4	
4.	Люфт	не более 0.25 угл. град.	1.5 угл. град.
5.	Мощность, кВт	0.55	0.55
6.	Потребляемый ток, А	1.5 (0.5 с преобразователем частоты)	1.7
7.	Периодичность обслуживания, ч	20 000	200
8.	Тип	Одноступенчатый цилиндрический с коническим переходом на выходном валу	Трехступенчатый: двойной планетарный и отдельно конический
9.	Возможности	Реализации многоскоростного режима и скоростей, близких к нулевым.	

Картограмма отклонений отражающей поверхности Южного сектора

Leika AT402, до 160 м.

 Rapid Adjustment of Large Antenna Surfaces Using Modern Laser Systems, <u>2020gbar.conf..428Z</u>.
 О возможности юстировки Главного зеркала радиотелескопа РАТАН-600 лазерными измерительными системами, Труды ИПА, 2021, принято в печать.

Радиосвойства галактик с гидроксильным мегамазерным излучением (ОНМ)

Гуйджоу, Китай)

<u>2020A&A...638A..78P</u>, Radio properties of the OH megamaser galaxy IRAS 02524+2046, Peng et al.

Галактики FRO

<u>2021ARep...65..233M</u>, Radio Properties of FRO Galaxies According to Multi-frequency Measurements with RATAN-600; <u>2020gbar.conf..390M</u>, Radio Properties of FRO Radio Galaxies:RATAN-600 Observations. Результаты представлены:

- 6th CSS/GPS Workshop, Torun, Poland, 2021
- Международная конференция «Идеи С. Б. Пикельнера и С. А. Каплана и современная астрофизика», 2021
- Всероссийская конференция «Наземная астрономия в России: XXI век», 2020

РАТАН-600 в многоканальной астрономии: полная выборка РСДБ-компактных струй в ядрах галактик как индикаторов нейтрино высоких энергий (АКЦ ФИАН, МФТИ)

IceCube триггер: ежемесячный мониторинг на РАТАН-600 активных галактик - новых кандидатов в источники нейтрино высоких энергий (ИЯИ РАН)

- > 2021/02. Popkov et al. Astronomical J. v.161, id.88, 20pp. DOI=10.3847/1538-3881/abd18c
- > 2021/02. Plavin et al. Astrohysical J. v.908, id.157, 10pp. DOI=10.3847/1538-4357/abceb8
- > 2020/12. Kovalev et al. Proc.of the All-Russian Conf.-SAO RAN DOI=10.26119/978-5-60450...
- > 2020/05 Plavin et al. Astrophysical J. v.894, id.101, 13pp. DOI=10.3847/1538-4357/ab86bd
- 2020/03 Larionov et al. MNRAS, v.492, p.3829-3848. DOI= 10.1093/mnras/staa082
- >2020/01 Kovalev et al. Advances in Space Res.v.65,p.745-755 DOI=10.1016/j.asr.2019.04.034
- ▶2021/04 Kosogorov et al. (представлена в MNRAS) 2021arXiv210408544K.

The odd-looking GPS quasar 0858-279 at z=2.15

Радиоспектры квазара, полученные на Р-600

Исследование статистически полной выборки (482) активных ядер галактик с помощью VLBA и PATAH-600 (АКЦ ФИАН, МФТИ)

Индекс переменности на 8 ГГц по данным мониторинга на РАТАН-600 и данным Mingaliev et al. 2001, 2007; Ricci et al. 2013, в зависимости от спектрального индекса компактной компоненты по двухчастотным наблюдениям на VLBA (2 и 8 ГГц).

• Все источники с сильной переменностью на 8 ГГц продетектированы VLBA и имеют плоский спектр компактной структуры.

• 82 новых кандидата в CSS – compact steep spectrum объекты (17%).

• Компактные источники с крутым спектром слабо переменны, то есть в излучении на парсековых масштабах доминируют внешние части джета или «мини-лобы».

Gigahertz-Peaked Spectrum. Blazars contamination

6TH WORKSHOP ON COMPACTSTEEPSPECTRUM AND GHZ-PEAKEDSPECTRUM RADIO SOURCES

virtual meeting

10-14 MAY 2021, TORUŃ, POLAND

Переменность

PS квазары на z >3

Mufakharov et al., 2021MNRAS.503.4662M

РЅ блазары

Количество измерений в радиоконтинууме блазаров BZCAT

M_{mean} = 25% at 8 GHz; N= 2607 M_{mean} = 26% at 22 GHz; N = 1028

Spectral shape 3651	Ν	fraction
PS	508	14%
similar to classic GPSs	186	5%
≤ 20 data points	819	22%

BLcat update – RATAN-600 multi-frequency data for blazars

M.G. Mingaliev, Yu.V. Sotnikova, R.Yu. Udovitskiy, T.V. Mufakharov, E.Nieppola, and A.K. Erkenov

Original 2014 edition: A&A 572, A59

BL Lacs and cand.	FSRQs	Uncertain type	All
🔿 🔿 🚺 tr	415 of 41	5 rows	~

login
Data Usage Policy
Column description
Help
Export main Table
and RATAN-600 data
Show/Hide columns

RATAN-600 multi-frequency data for the blazars Mingaliev et al., A&A, 2014 <u>www.sao.ru/blcat</u> 2005-2021 rr. (~1200)

Выборка РАТАН-600 S_{1.4} > 100 mJy, -35° < Dec < 45° 1.1, 2.2, 4.7, 8.2, 11.2, 22 GHz 2005 -2021

Что нового:

~1200;

-радиоконтинуум по доступным литературным данным для всех блазаров;

- экспорт данных.

Check all	RATAN data	Set stat	Source name 🔹	Ra	¢ Dec ¢	Flux density at 4.8 GHz, [Jy] = stat	Redshift	Rmag stat	Blazar typ stat
									Select t
62	Data explorer	21	PKS 0219-164	02 22 00	-16 15 16	0.28	0.698	18.4	FSRG
74	Data explorer	24	PKS 0306+102	03 09 03	10 29 16	0.63	0.863	19.9	FSRG
65	Data explorer	26	\$40340+50	03 43 28	36 22 12	0.36	1.485	20.2	FSRG
					02 19 27	1.17	2.277	19.3	FSRG
				Date					

Одновременные спектры Р-600

BLcat update

www.sao.ru/blcat 2014A&A...572A..59M RATAN data: 2005-2021

<u>www.sao.ru/cats/</u> 2005BSAO...58..118V , 2009DatSJ...8...34V, CATS: published literature data

Свидетельство государственной регистрации РИД

Разработка диагностики плазменных струй в короне Солнца

Определение физических механизмов, ответственных за генерацию, коллимацию и динамику плазменных струй в атмосфере Солнца.

Основное внимание сосредоточено на крупномасштабных "горячих" струях, наблюдаемых в короне Солнца, что позволит в полной мере использовать потенциал наблюдений в радиодиапазоне, с его относительно низким пространственным разрешением, но при этом уникальной информацией об электронной температуре, величине магнитного поля, магнитной геометрии, и ускоренных электронах.

 Диагностика плазменных струй в короне Солнца, Солнечно-земная физика. 2021. Т. 7. № 2
 Горячие струи в короне Солнца: составление каталога событий по данным многоинструментальных наблюдений, «Геомагнетизм и аэрономия», 2021, доп. вып.
 Поддержано РФФИ

Диагностика плазменных струй в короне Солнца (550/87)

По данным SDO/AIA с помощью системы первичной обработки данных составлен каталог плазменных струй в короне Солнца путем визуальной идентификации событий в фильмах, построенных по высокопрецизионным КУФ наблюдениям с размером пикселя 0.6".

Solar Data Analysis													
Home Coronal Jets Catalog DataAnalyser Database Contacts													
Каталог горячих струй в короне Солнца													
Autorior repains cryin b kepone connu													
Таб	пипа	xlsx											
	R	C	D	F	F	G	н	I	1	ĸ	1	м	
1	HEK Sa -	Start date-time	• Start time .7	End date-time	X farcsec -	Y farcsecl 👻	Longitu -	Latitude 👻	Jet time (S 👻	RATAN observation	SRH/SSRT observation	NoRH obser	-Ti-l
5	open	1/30/2018 8:15	8:15:08 AM	1/30/2018 10:01	-954.0	433.0	-87.04	24.24	8:45:00 AM	5 obs 07:45:50 - 11:07:54	LC-No	· · · · ·	
6	open	1/31/2018 2:25	2:25:02 AM	1/31/2018 3:00	22.0	978.0	11.74	83.65			LC-No		Ť
7	open	2/7/2018 2:32	2:32:02 AM	2/7/2018 3:35	-804.4	-33.7	-56.00	-5.59			LC-Act	bad maps	
9	open	2/20/2018 2:00	2:00:02 AM	2/20/2018 3:20	217.0	947.0	61.02	75.21			LC-No	no obs	
12	open	2/23/2018 5:40	5:40:05 AM	2/23/2018 6:25	-519.0	-918.0	-78.18	-59.81				no obs	T
16	open	4/3/2018 3:45	3:45:03 AM	4/3/2018 5:31	-347.0	-198.0	-22.23	-17.83				no obs	I
17	open	4/4/2018 8:40	8:40:08 AM	4/4/2018 10:40	793.0	-722.0	84.59	-42.04	9:05:00 AM	1 obs 09:16:38	LC-No	no obs	Ι
19	open	4/24/2018 9:13	9:13:09 AM	4/24/2018 9:34	-176.3	124.8	-10.62	2.74		0 obs	Lc-No		1
24	open	5/10/2018 4:30	4:30:04 AM	5/10/2018 5:30	-611.0	802.0	-85.34	52.55			Lc-No		1
25	open	5/11/2018 6:40	6:40:06 AM	5/11/2018 7:30	30.0	982.0	27.42	86.20	7:07:00 AM	5 obs 07:28:47 - 10:51:13	LC-No		+
27	open	5/12/2018 2:40	2:40:02 AM	5/12/2018 3:29	1039.0	-135.0	89.87	-7.41			LC-No		+
31	open	5/17/2018 8:50	8:50:08 AM	5/17/2018 10:06	492.0	-927.0	86.00	-61.97	9:22:00 AM	5 obs 07:27:52 -10:52:10	LC-No		+
33	open	5/22/2018 8:27	8:27:08 AM	5/22/2018 8:36	104.9	105.0	6.35	4.50	8:31:00 AM	5 obs 07:27:24 - 10:53:10	LC-No		+
59	open	6/16/2018 8:50	8:50:08 AM	6/16/2018 10:00	372.0	944.0	87.80	68.48	9:10:00 AM	5 005 07:29:06-10:59:30	· · · · · · · · · · · · · · · · · · ·	17047.044	+
40	0000	6/22/2018 2:20	2:20:02 AM	6/22/2018 2:50	737.6	47.6	51.39	4.02			i	17GHZ R+L	+
42	open	6/29/2018 1:50	1:50:01 AM	6/29/2018 5:14	-97.0	1008.0	-00.81	-74.00			A second second second second second		+
44	0000	7/24/2018 2:35	2:35:02 AM	7/24/2018 3.25	-49.0	-985.0	-2.97	-74.00	9:09:00 AM	5 obr 07:37:39 -11:02:37			+
49	0060	8/22/2018 5:30	5:30:05 AM	8/22/2018 6:08	-223.9	-214.7	-13.68	-6.30	3.03.00 AM	300301.31.33-11.02.31	1	had data	+
51	0000	9/14/2018 5:40	5:40:05 AM	9/14/2018 5:56	190.0	-278.7	11.62	-9.86			show	17GHz 8+L	+
52	open	9/16/2018 1:25	1:25:01 AM	9/16/2018 1:48	565.3	-249.8	36.78	-9.40			show	17GHz R+L	+
57	open	10/13/2018 5:00	5:00:05 AM	10/13/2018 5:47	-818.1	-169.2	-58.84	-7.03				17GHz R+L	+
58	open	12/30/2017 1:47	1:47:01 AM	12/30/2017 1:59	950.7	321.2	88.78	18.63					+
59	open	12/27/2017 4:40	4:40:04 AM	12/27/2017 5:21	102.0	1059.0	63.95	83.87					1.
	•	1.1.1						1		1	1		
H		Лист1											
eta.			-									A 10	-
A B													
									1 landa	f /	and take a	a deal a s	

© 2019, St. Petersburg Branch of SAO RAS

Наблюдение плазменных струйных излучений одновременно в различных диапазонах позволяет детально изучить как их инициирование, энергию, динамику и коллимацию, так и связанные с ними плазменные процессы: неустойчивость, турбулентность и ускорение заряженных частиц.

Изображения SDO (AIA и HMI), полученные 17.04.2019 в 08:32 UT (AIA) и 08:33UT (HMI) с наложенными сканами в антенных температурах (*I*-интенсивность показана сплошной линией, *V*-поляризация — штриховой), полученными на PATAH-600 в 08:32 UT на частоте 11.53 ГГц во время проявления струи (08:28–08:47 UT). Струя расположена вертикально внутри скана *V*. При совмещении изображения были повернуты, так чтобы диаграмма направленности PATAH-600 на изображении была вытянута в вертикальном направлении

Сканы РАТАН-600 антенных температур поляризованного излучения АО 12738 за 17.04.2019 на частотах 5.25, 8.25 и 11.20 ГГц. Разными цветами показаны наблюдения в разных азимутах: 31 запись наблюдений в промежутке времени 07:11–11:15 UT с шагом 8 мин. Сдвиг сканов слева направо является проекционным эффектом, связанным с вращением Земли и зависящим от ориентации антенны радиотелескопа. Период прохождения струи соответствует повышению излучения на сканах синего цвета.

Развития приборной базы радиотелескопа (2019-2020). Замена электроприводного оборудования Плоского отражателя. Внедрение модульных радиометров диапазона 22 и 14 ГГц. Антикоррозийная защита металлоконструкций телескопа (~43000 m²). Внедрение методов 3D сканирования антенны телескопа в безотражательном режиме. Новые программы на телескопе (FR0, OHM, кандидаты в нейтрино)

Модернизация каталога блазаров BLcat <u>www.sao.ru/blcat</u>.

Завершение каталога горячих струй на Солнце <u>http://spbf.sao.ru/coronal-jets-catalog</u>.