УДК 524.332

# ПЗС НАБЛЮДЕНИЯ И ИЗМЕНЯЕМОСТЬ ПЕРИОДА DVЕДИНОРОГА — ПЕРЕМЕННОЙ ТИПА RR ЛИРЫ, ПОДТИП ab

© 2019 Л. Н. Бердников<sup>1\*</sup>, А. Ю. Князев<sup>2, 3, 1\*\*</sup>, А. К. Дамбис<sup>1, 4\*\*\*</sup> В. В. Кравцов<sup>1\*\*\*\*</sup>, Е. Н. Пастухова<sup>5\*\*\*\*\*</sup>, И. Ю. Катков<sup>1, 6\*\*\*\*\*\*</sup>

<sup>1</sup>Государственный астрономический институт им. П. К. Штернберга Московского государственного университета им. М. В. Ломоносова, Москва, 119992 Россия

<sup>2</sup>Южно-Африканская астрономическая обсерватория, Кейптаун, 7935 ЮАР

<sup>3</sup>Южный Африканский большой телескоп, Кейптаун, 7935 ЮАР

<sup>4</sup>Физический факультет Московского государственного университета им. М. В. Ломоносова, Москва, 119991 Россия

<sup>5</sup>Институт астрономии РАН, Москва, 119017 Россия

<sup>6</sup>Нью-Йоркский иниверситет Аби-Даби, Аби-Даби, 129188 ОАЭ

Поступила в редакцию 3 декабря 2018 года; после доработки 12 марта 2019 года; принята к публикации 12 марта 2019 года

Получены 635 ПЗС кадров в фильтрах B, V и  $I_c$  для переменной типа RR Лиры (подтип ab) DV Единорога, расположенной в 1"9 от яркой звезды. Наблюдения выполнялись с помощью ПЗС камеры SBIG CCD ST-10XME на 76-см телескопе Южно-Африканской астрономической обсерватории. PSF-фотометрия позволила впервые получить надежные раздельные кривые блеска для обеих звезд и определить их координаты. На основе всех имеющихся данных построена диаграмма O - C, охватывающая интервал времени длительностью 110 лет, что позволило выявить как минимум три резких изменения периода, произошедшие в эпохи около JD 2438000, 2453500 и 2456500. Эшельные спектры высокого разрешения, полученные на Южном Африканском большом телескопе (SALT), свидетельствуют о том, что DV Единорога является переменной типа RR Лиры подтипа ab толстого диска Галактики.

Ключевые слова: звезды: переменные: типа RR Лиры

### 1. ВВЕДЕНИЕ

Переменные типа RR Лиры являются эффективным инструментом для исследования кинематики старого населения и определения расстояний. Но для определения периода изменений блеска, средней звездной величины и формы кривой блеска (которая, в частности, служит основой классификации звезды как переменной типа RR Лиры) необходимо получить большой объем фотометрических данных.

Нами реализуется программа ПЗС наблюдений переменных типа RR Лиры с плохо прописанными или отсутствующими кривыми блеска [1–3], одной из которых является DV Единорога.

\*\*\*\*\*E-mail: valery.kravtsov@uda.cl

DV Единорога была открыта Хоффмейстером на фотопластинках [4] как короткопериодическая переменная с амплитудой 0<sup>m</sup>5. Анерт [5] определил период звезды - согласно его данным он равен 0<sup>.4</sup>13394 - и классифицировал ее как переменную типа RR Лиры с изменением блеска в пределах 12<sup>m</sup>.85 – 13<sup>m</sup>.25. Лейден [6] в ходе фотометрических наблюдений обнаружил, что переменная образует тесную оптическую пару с расположенной рядом звездой, которую не удалось вывести за пределы апертуры и которая из-за этого искажала измеренные значения звездных величин. Мартигнони [7] опубликовал ПЗС наблюдения звезды без фильтра, по которым получалась кривая блеска с амплитудой 0<sup>m</sup>5, т.е., такой же, как и по данным Лейдена [6]. Это свидетельствовало о том, что результаты апертурной фотометрии Мартигнони были искажены влиянием близкого яркого оптического компаньона.

По этой причине мы включили DF Единорога в программу наших спектральных и фотометриче-

<sup>\*</sup>E-mail: lberdnikov@yandex.ru

<sup>\*\*</sup>E-mail: akniazev@saao.ac.za

<sup>\*\*\*\*</sup>E-mail: dambis@yandex.ru

<sup>\*\*\*\*\*\*</sup> E-mail: pastukhova@sai.msu.ru

E-mail: katkov@sai.msu.ru



**Рис. 1.** Карта окрестности DV Единорога размером $3.'3 \times 2.'0$ , север вверху, восток слева.

ских ПЗС наблюдений, результаты которых представлены в данной статье.

### 2. НАБЛЮДЕНИЯ

### 2.1. Фотометрия

Мы выполнили фотометрические ПЗС наблюдения звезды в течение трех сезонов с декабря 2010 г. по январь 2013 г. (интервал эпох JD 2455896– 56785) на 76-см телескопе Южноафриканской астрономической обсерватории (SAAO) с помощью ПЗС камеры SBIG CCD ST-10XME в фильтрах *BVI*<sub>c</sub> системы Крона–Казинса [8]. Карта окрестности DV Единорога размером 3.'3 × 2.'0 приведена на рис. 1.

Для обработки данных использовалось то же программное обеспечение, что и в нашей предыдущей статье [9]. На основе обработки данных для всех фотометрических ночей был получен каталог положений и PSF звездных величин для всех объектов на лучших ПЗС кадрах, выявлены постоянные звезды, которые использовались затем в качестве звезд сравнения для дифференциальной фотометрии всех звезд на всех ПЗС кадрах, включая кадры, полученные в нефотометрические ночи.

Всего было получено 635 ПЗС кадров. Результаты наших фотометрических наблюдений представлены в таблице 1, а кривые блеска DV Единорога в фильтрах  $BVI_c$  показаны на рис. 2.

В качестве опорного каталога для определения координат DV Единорога и ее близкого оптического компаньона использовался каталог USNO-B1.0 [10]. Оказалось, что в Общем каталоге переменных звезд (ОКПЗ) для звезды приведены неправильные координаты, которые на самом деле относятся к более яркому оптическому компаньону. В таблице 2 приведены координаты обеих звезд из второй версии каталога Gaia на основе правильного отождествления вместе с их звездными величинами в фильтрах  $BVI_c$ .



**Рис. 2.** Кривые блеска DV Единорога в фильтрах *BVI*<sub>c</sub>.

В этой же таблице также приводятся усредненные по интенсивности средние звездные величины DV Единорога, используемые для оценки расстояния.

### 2.2. Спектральные наблюдения

17 января 2019г был получен спектр звезды с экспозицией 2500 секунд на спектрографе HRS [13-16] Южного Африканского большого телескопа [11, 12]. При этом спектрограф HRS работал в режиме среднего разрешения (MR;  $R \sim 40\,000-$ 43 000), а диаметр оптического волокна составлял 2"23 для спектра объекта и спектра неба. В результате был получен спектр, охватывающий диапазон длин волн примерно 3900-8900 Å.. Считывание ПЗС спектров голубого и красного плеч производилось через один усилитель с биннингом 1×1. Наблюдение выполнялось при качестве изображения в 1 ... 9. Наблюдатель видел, что объект состоит из двух источников и устанавливал центр волокна на более слабый источник, т.е., собственно на DV Единорога. В ходе еженедельной калибровки спектрографа HRS снимались три спектра плоского поля излучения ториево-аргоновой лампы этого достаточно для достижения внешней точности  $300 \,\mathrm{m}\,\mathrm{c}^{-1}$ . Все полученные данные сначала подвергались первичной стандартной обработке [17]. Для спектроскопической редукции данных спектрографа HRS использовалась наше собственное

## БЕРДНИКОВ и др.

Таблица 1. ПЗС наблюдения DV Единорога

| HJD         | Δu u m | 25. 50.000000 | HJD         | Δu u m                | 25. 50.00000 | HJD         | Δu τu τp |              |
|-------------|--------|---------------|-------------|-----------------------|--------------|-------------|----------|--------------|
| 2400000+    | Фильтр | Эв. величина  | 2400000+    | • willip Ob. bein and |              | 2400000+    | Фильтр   | эв. величина |
| 55563.44361 | V      | 14.210        | 55566.54687 | В                     | 13.676       | 55566.54723 | V        | 13.288       |
| 55566.54753 | $I_c$  | 12.753        | 55567.52998 | $I_c$                 | 13.283       | 55568.37782 | В        | 14.924       |
| 55568.37818 | V      | 14.188        | 55568.37848 | $I_c$                 | 13.237       | 55568.37899 | В        | 14.910       |
| 55568.37917 | V      | 14.209        | 55568.37930 | $I_c$                 | 13.303       | 55570.34362 | V        | 13.790       |
| 55570.34381 | $I_c$  | 13.018        | 55570.34451 | $I_c$                 | 13.095       | 55570.38841 | $I_c$    | 13.152       |
| 55570.38873 | B      | 14.763        | 55570.38897 | V                     | 14.066       | 55570.38915 | $I_c$    | 13.205       |
| 55570.40325 | V      | 14.183        | 55570.40344 | $I_c$                 | 13.213       | 55570.40416 | $I_c$    | 13.253       |
| 55570.41683 | $I_c$  | 13.229        | 55570.41757 | $I_c$                 | 13.216       | 55570.41845 | В        | 14.972       |
| 55570.41924 | $I_c$  | 13.237        | 55570.43612 | $I_c$                 | 13.284       | 55570.43685 | $I_c$    | 13.322       |
| 55570.46447 | $I_c$  | 13.257        | 55570.46488 | V                     | 14.339       | 55570.46507 | $I_c$    | 13.382       |
| 55570.46566 | $I_c$  | 13.350        | 55570.48678 | $I_c$                 | 13.335       | 55570.48735 | V        | 14.241       |
| 55570.48753 | $I_c$  | 13.278        | 55570.50243 | V                     | 14.400       | 55570.50261 | $I_c$    | 13.381       |
| 55570.50432 | $I_c$  | 13.445        | 55570.52222 | $I_c$                 | 13.377       | 55570.52250 | B        | 15.100       |
| 55570.52293 | $I_c$  | 13.408        | 55570.55529 | В                     | 15.222       | 55570.55553 | V        | 14.411       |
| 55570.55572 | $I_c$  | 13.455        | 55570.55625 | V                     | 14.424       | 55570.55645 | $I_c$    | 13.419       |
| 55570.57185 | $I_c$  | 13.415        | 55570.57226 | V                     | 14.435       | 55570.57244 | $I_c$    | 13.525       |
| 55572.33288 | $I_c$  | 12.707        | 55574.43183 | $I_c$                 | 12.893       | 55574.43234 | V        | 13.446       |
| 55575.41301 | B      | 15.010        | 55575.41325 | V                     | 14.219       | 55575.41344 | $I_c$    | 13.290       |
| 55575.41391 | B      | 14.950        | 55575.41427 | V                     | 14.223       | 55575.41457 | $I_c$    | 13.274       |
| 55575.43889 | V      | 14.277        | 55575.43920 | $I_c$                 | 13.319       | 55575.46729 | В        | 15.175       |
| 55575.46795 | $I_c$  | 13.378        | 55577.43372 | V                     | 14.091       | 55577.43392 | $I_c$    | 13.196       |
| 55577.43446 | V      | 14.154        | 55577.43465 | $I_c$                 | 13.278       | 55577.48027 | $I_c$    | 13.246       |
| 55579.28242 | $I_c$  | 13.472        | 55579.28343 | $I_c$                 | 13.494       | 55579.31870 | $I_c$    | 13.252       |
| 55579.31976 | $I_c$  | 13.261        | 55580.33770 | V                     | 14.093       | 55580.33789 | $I_c$    | 13.192       |
| 55580.33845 | V      | 14.133        | 55580.33864 | $I_c$                 | 13.173       | 55580.37538 | $I_c$    | 13.256       |
| 55580.37833 | V      | 14.208        | 55580.37864 | $I_c$                 | 13.263       | 55580.40470 | V        | 14.269       |
| 55580.40500 | $I_c$  | 13.298        | 55580.46065 | В                     | 15.194       | 55580.46131 | $I_c$    | 13.393       |
| 55580.47522 | B      | 15.166        | 55580.47558 | V                     | 14.329       | 55580.47588 | $I_c$    | 13.391       |
| 55580.50733 | V      | 14.356        | 55580.50763 | $I_c$                 | 13.548       | 55586.32920 | $I_c$    | 13.451       |
| 55586.37209 | B      | 13.495        | 55586.37245 | V                     | 13.475       | 55586.39803 | B        | 13.706       |
| 55586.39847 | $I_c$  | 12.864        | 55586.40625 | В                     | 13.868       | 55586.40649 | V        | 13.509       |
| 55586.40667 | $I_c$  | 12.819        | 55586.41135 | В                     | 13.810       | 55586.41718 | V        | 13.625       |
| 55586.41737 | $I_c$  | 12.900        | 55586.42318 | $I_c$                 | 12.853       | 55586.44482 | V        | 13.652       |
| 55586.44952 | В      | 14.304        | 55586.45018 | $I_c$                 | 13.083       | 55586.46887 | В        | 14.409       |
| 55586.46923 | V      | 13.856        | 55586.46953 | $I_c$                 | 13.046       | 55586.51004 | В        | 14.753       |
| 55586.51040 | V      | 14.031        | 55586.51070 | $I_c$                 | 13.161       | 55587.35677 | $I_c$    | 13.188       |
| 55587.36803 | В      | 14.834        | 55587.36839 | V                     | 14.198       | 55587.36869 | $I_c$    | 13.247       |
| 55587.38331 | $I_c$  | 13.306        | 55587.38468 | $I_c$                 | 13.247       | 55587.44278 | В        | 15.112       |

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 74 № 2 2019



**Рис. 3.** Результат анализа спектра DV Единорога, полученного на спектрографе HRS. Черная и красная линии соответствуют наблюдаемому спектру и его модельному приближению. Синий и оранжевые спектры относятся, соответственно, к DV Единорога и его оптическому компаньону. В нижней части рисунка показана разность между наблюдаемым и модельным спектрами с учетом ошибок процесса обработки данных спектрографа HRS. Резкие пики на наблюдаемом спектре связаны с неучтенными следами от космических частиц.

| Параметр                           | DV Единорога                                                                              | Компаньон                          |
|------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|
| Прямое восхождение                 | $06^{h}45^{m}19\overset{s}{.}4381$                                                        | $06^{h}45^{m}19\overset{s}{.}3799$ |
| Склонение                          | $-8^{\circ}50'18''_{.}991$                                                                | $-8^{\circ}50'20''.710$            |
| Блеск в фильтре <i>В</i>           | $13 \stackrel{\rm m}{.} 50 - 15 \stackrel{\rm m}{.} 30$                                   | $13$ <sup>m</sup> $\cdot 85$       |
| Блеск в фильтре $V$                | $13 \stackrel{\rm m}{.} 23 - 14 \stackrel{\rm m}{.} 46$                                   | $13 \stackrel{\rm m}{.} 33$        |
| Блеск в фильтре $I_c$              | $12 \substack{ {\rm m} \\ {\rm \cdot} } 69 {-} 13 \substack{ {\rm m} \\ {\rm \cdot} } 50$ | $12^{\rm m}_{\cdot}71$             |
| Ср. интенс. в $\langle B \rangle$  | $14 \stackrel{\mathrm{m}}{\cdot} 58$                                                      | —                                  |
| Ср. интенс. в $\langle V \rangle$  | $13 \stackrel{\mathrm{m}}{\cdot} 99$                                                      | —                                  |
| Ср. интенс. в $\langle I_c  angle$ | $13 \stackrel{\mathrm{m}}{\cdot} 17$                                                      | —                                  |
| B-V                                | 0 <sup>m</sup> 59                                                                         | 0.52                               |
| $V - I_c$                          | $0$ $\cdot^{m}82$                                                                         | $0$ $\cdot$ <sup>m</sup> 62        |

Таблица 2. Параметры DV Единорога и его оптического компаньона, определенные по данным фотометрии

программное обеспечение, подробное описанное в статьях Князева и др. [18] и [19].

### 3. СПЕКТР DV ЕДИНОРОГА И ЕГО ОПТИЧЕСКОГО КОМПАНЬОНА

Для исследования полностью обработанных спектров спектрографа HRS использовалось программное обеспечение, специально разработанное нашей группой (Катков и др., готовится к печати). Эта программа использует библиотеку теоретически рассчитанных звездных спектров высокого разрешения и предназначена для определения лучевых скоростей и звездных параметров ( $T_{\rm eff}$ , lg g, sin i и [Fe/H]) для обоих компонентов двойной системы. Эта программа одновременно аппроксимирует наблюдаемый спектр модельным, который получается путем интерполяции сетки звездных моделей, и свертывает его с функцией,

| Параметр                           | DV Единорога       | Компаньон             |
|------------------------------------|--------------------|-----------------------|
| $T_{\rm eff},$ K                   | $6930^{+50}_{-50}$ | $14700^{+150}_{-150}$ |
| $\lg g$ , см с $^{-1}$             | $3.3\pm0.1$        | $4.9\pm0.1$           |
| [Fe/H], dex                        | $-0.19\pm0.07$     | $-0.24\pm0.05$        |
| $v \sin i$ , км $c^{-1}$           | $12.6\pm0.2$       | $71.9\pm2.5$          |
| $V_{r{ m hel}}$ , km ${ m c}^{-1}$ | $102.1\pm0.1$      | $29.9 \pm 1.2$        |
| Bec                                | $0.70\pm0.01$      | $0.30\pm0.01$         |

Таблица 3. Параметры DV Единорога и его оптического компаньона, определенные по данным спектроскопии

учитывающей инструментальное разрешение и уширение, вызванное вращением звезды  $(v \sin i)$  со сдвигом, соответствующим конкретному значению лучевой скорости на данную эпоху. В случае, когда известно, что речь идет о двойной звезде, производится подгонка двух модельных спектров для компонентов, каждый со своей лучевой скоростью и параметрами звездной атмосферы. В текущей версии программы используются модели звезд из [21].

Результаты нашего анализа приведены в таблице 3 и представлены на рис. 3. В ходе наблюдения DV Единорога на спектрографе HRS волокно было установлено на центр самой звезды DV Единорога. Поскольку диаметр волокна соответствовал 2"23, а расстояние между DV Единорога и ее оптическим компаньоном составляет около 1"9, то вклад более яркого компаньона не отражает реального отношения потоков от двух звезд. Как видно из таблицы 3, на более яркую звезду-компаньон приходится всего 0.3 общего потока.

Наблюдение DV Единорога на спектрографе HRS было выполнено в эпоху JD = 2458501.4697, что соответствует фазе 0.65 (см. таблицу 6) и поэтому измеренная лучевая скорость достаточно близка к системной скорости звезды. Измеренные значения  $VV_{r\,\rm hel}$  и [Fe/H] позволяют уверенно отнести DV Единорога к классу переменных типа RR Лиры (подтип ab) старого Галактического диска, в пользу чего свидетельствует также и определенное по спектру значение эффективной температуры  $TT_{\rm eff}$ .

### 4. АБСОЛЮТНАЯ ЗВЕЗДНАЯ ВЕЛИЧИНА И РАССТОЯНИЕ ДО DV Единорога

Значения тригонометрических параллаксов DV Единорога и ее компаньона, приведенные во втором выпуске каталога Gaia DR2, равны, соответственно,  $px = 0.3508 \pm 0.0339$  и  $0.5398 \pm$  $\pm 0.0316$  миллисекунд дуги [22]. Их разность составляет  $0.1890 \pm 0.04463$  миллисекунд дуги, т.е.,  $4.08\,\sigma$ , исключая возможность физической связи между звездами. Параллаксу DV Единорога соответствует расстояние  $D = 2.851 \pm 0.251$  кпк, но необходимо также учесть систематическую ошибку параллаксов Gaia DR2. Так, в рекомендациях по использованию параллаксов Gaia DR2 Лури и др. [23] признают наличие смещения нуль-пункта системы параллаксов на величину 30 микросекунд дуги (параллаксы Gaia DR2 занижены на эту величину). Цинн и др. [24] оценивают систематическое смещение нуль-пункта параллаксов Gaia DR2 в  $52.8 \pm 3.4$  и  $50.2 \pm 3.5$  микросекунд дуги на основе анализа данных для звезд ветви красных гигантов и сгущения красных гигантов, соответственно. Рисс и др. [25] получили оценку смещения параллаксов, равную  $46 \pm 13$  микросекунд дуги на основе анализа ярких Галактических цефеид, а сравнение фотометрических параллаксов 94 рассеянных скоплений со средними тригонометрическими параллаксами Gaia DR2 их членов в работе Ялялиевой и др. [26] дает для смещения нуль-пункта системы параллаксов Gaia DR2 оценку 44.6 ± 8.9 микросекунд дуги. По этой причине мы добавляем к тригонометрическому параллаксу DV Единорога поправку, равную + +0.050 миллисекунд дуги и получаем исправленное значение параллакса  $px_{\rm DV Mon} = 0.4008$  миллисекунд дуги, что соответствует расстоянию 2.495 кпк. Недавно опубликованная трехмерная карта межзвездного поглощения Грина и др. [27, 28] дает для DV Единорога значение избытка цвета  $E_{B-V} = 0.296$ . Принятые значения расстояния и покраснения в сочетании со значением средней по потоку звездной величины в фильтре V из таблицы 2 дают для звезды значение абсолютной звездной величины в фильтре V, равное  $\langle M_V \rangle =$ = +1.058, что, учитывая значение металличности

 $[{\rm Fe}/{\rm H}] = -0.19$  из таблицы 3, находится в хорошем согласии со значением, которое получается по калибровке зависимости металличность-светимость на основе результатов применения метода статистических параллаксов в работе Дамбиса и др. [29] ( $\langle M_V \rangle = +1.094 + 0.232 \times [{\rm Fe}/{\rm H}]$ ) —  $M_V = +1.055$  — и при этом значительно слабее значения  $M_V = +0.735$ , которое получается в случае применения калибровки Бенедикта и др. [30] ( $\langle M_V \rangle = +0.45 + 0.214 \times ([{\rm Fe}/{\rm H}]+1.5)$ ), основанной на тригонометрических параллаксах, измеренных с помощью Космического телескопа Хаббл.

### 5. ИЗМЕНЯЕМОСТЬ ПУЛЬСАЦИОННОГО ПЕРИОДА

Для исследования изменяемости пульсационного периода DV Единорога мы использовали стандартный метод анализа диаграмм O - C. Наиболее точный способ определения остатков O - Cсостоит в использовании метода Герцшпрунга [31], описание компьютерной реализации которого приведено в статье [32].

Мы дополнили наши ПЗС наблюдения (таблица 1) ПЗС наблюдениями обзоров ASAS-3 [33], ASAS-SN [34, 35], INTEGRAL-OMC [36] и NSVS [37], а также наблюдениями из международной баз данных Американской ассоциации наблюдателей переменных звезд (AAVSO) [38], статей [39] и [6], а также списки опубликованных моментов максимума блеска [7, 40–44]. Мы также использовали моменты фотографических максимумов блеска из статьи [5] и кроме того обнаружили еще пять моментов максимума блеска, исследовав фотопластинки коллекции ГАИШ МГУК (Москва). Сводка числа использованных наблюдений, которые охватывают интервал времени длительностью 110 лет, приведена в таблице 4.

Поскольку все опубликованные оценки блеска DV Единорога включают вклад компаньона, мы вычли его поток (в соответствии с данными таблицы 2) из всех измерений и перевели получившиеся интенсивности в звездные величины, ряды которых потом были обработаны методом Герцшпрунга. В таблице 5 приводятся результаты расчета значений O - C для сезонных кривых блеска DV Единорога. В первом и втором столбце приводится вычисленное значение момента максимума блеска и его среднеквадратичная ошибка; в третьем столбце указан тип наблюдений (см. таблицу 4); в четвертом и пятом столбцах приводится номер эпохи Е и значение остатка O - C (в сутках), а в шестом и седьмом столбцах приводится число наблюдений N и источник данных (см. таблицу 4).

| Источник данных | Количество наблюдений | оличество наблюдений Тип наблюдений        |                   |
|-----------------|-----------------------|--------------------------------------------|-------------------|
| Эта статья      | 5                     | Фотографические максимумы (PG)             | 2418376-2449359   |
| [5]             | 25                    | Фотографические максимумы (PG) (PG)        | 2425246-2431031   |
| [5]             | 52                    | Photographic (PG)                          | 2425246-2431031   |
| [6]             | 33                    | $\Phi$ отоэлектрическая фотометрия ( $B$ ) | 2448965 - 2448972 |
| [6]             | 33                    | $\Phi$ отоэлектрическая фотометрия (V)     | 2448965 - 2448972 |
| [39]            | 15                    | ПЗС ( V)                                   | 2449668 - 2450025 |
| NSVS            | 99                    | ПЗС (без фильтра)                          | 2451455 - 2451630 |
| ASAS-3          | 569                   | ПЗС ( V)                                   | 2451868-2455168   |
| [7]             | 167                   | 3 момента максимума, ПЗС (без фильтра)     | 2451574 - 2451963 |
| [40-44]         | —                     | 11 моментов максимума, ПЗС (без фильтра)   | 2454073 - 2455575 |
| Эта статья      | 115                   | ПЗС (В)                                    | 2455566 - 2456317 |
| Эта статья      | 194                   | $\Pi 3C(V)$                                | 2455563 - 2456317 |
| Эта статья      | 326                   | $\Pi 3C(I_c)$                              | 2455566-2456317   |
| AAVSO           | 436                   | $\Pi 3C(V)$                                | 2451574 - 2456322 |
| INTEGRAL-OMC    | 156                   | ПЗС (V)                                    | 2452749-2455704   |
| ASAS-SN         | 967                   | ПЗС (V)                                    | 2457007-2458419   |
| ASAS-SN         | 54                    | $\Pi 3C(g)$                                | 2458335 - 2458423 |

Таблица 4. Наблюдательные данные для DV Единорога

Таблица 5. Эпохи максимума блеска DV Единорога

| Эпоха максимума | Ошибка, | Полоса    | E      | O-C,   | N   | Источник   |
|-----------------|---------|-----------|--------|--------|-----|------------|
|                 | сутки   | 110010 00 | 1      | сутки  | 1.  | данных     |
| (1)             | (2)     | (3)       | (4)    | (5)    | (6) | (7)        |
| 2418376.2580    | _       | PG        | -95153 | 0.0287 | _   | This paper |
| 2425246.4700    | _       | PG        | -78534 | 0.1679 | _   | [5]        |
| 2425246.5000    | _       | PG        | -78534 | 0.1979 | _   | [5]        |
| 2425534.6400    | _       | PG        | -77837 | 0.2074 | _   | [5]        |
| 2425650.3800    | _       | PG        | -77557 | 0.1991 | _   | [5]        |
| 2425984.4600    | _       | PG        | -76749 | 0.2627 | _   | [5]        |
| 2426772.3500    | _       | PG        | -74843 | 0.2378 | _   | [5]        |
| 2427130.3100    | _       | PG        | -73977 | 0.2049 | _   | [5]        |
| 2427343.6300    | _       | PG        | -73461 | 0.2174 | _   | [5]        |
| 2427396.5800    | _       | PG        | -73333 | 0.2539 | _   | [5]        |
| 2427420.5400    | _       | PG        | -73275 | 0.2375 | _   | [5]        |
| 2427459.4600    | _       | PG        | -73181 | 0.2991 | _   | [5]        |
| 2427505.3300    | _       | PG        | -73070 | 0.2832 | —   | [5]        |
| 2427718.6400    | —       | PG        | -72554 | 0.2857 | _   | [5]        |

### БЕРДНИКОВ и др.

Таблица 5. (Продолжение)

| Эпоха максимума | Ошибка, | Полоса   | E      | O-C,    | N   | Источник     |  |
|-----------------|---------|----------|--------|---------|-----|--------------|--|
|                 | сутки   | 11001000 | Ľ      | сутки   | 1.4 | данных       |  |
| (1)             | (2)     | (3)      | (4)    | (5)     | (6) | (7)          |  |
| 2427781.4600    | _       | PG       | -72402 | 0.2709  | _   | [5]          |  |
| 2427884.3200    | _       | PG       | -72153 | 0.1977  | —   | [5]          |  |
| 2429633.4500    | _       | PG       | -67922 | 0.2887  | —   | [5]          |  |
| 2429634.2500    | _       | PG       | -67920 | 0.2620  | —   | [5]          |  |
| 2429635.5000    | _       | PG       | -67917 | 0.2718  | —   | [5]          |  |
| 2429696.3200    | _       | PG       | -67770 | 0.3240  | —   | [5]          |  |
| 2430346.5600    | _       | PG       | -66197 | 0.3068  | —   | [5]          |  |
| 2430731.4400    | _       | PG       | -65266 | 0.3238  | —   | [5]          |  |
| 2430735.5700    | _       | PG       | -65256 | 0.3199  | —   | [5]          |  |
| 2430784.3000    | _       | PG       | -65138 | 0.2703  | _   | [5]          |  |
| 2430788.4400    | _       | PG       | -65128 | 0.2764  | _   | [5]          |  |
| 2430791.3500    | _       | PG       | -65121 | 0.2927  | _   | [5]          |  |
| 2431031.5800    | _       | PG       | -64540 | 0.3451  | _   | [5]          |  |
| 2441035.2710    | _       | PG       | -40340 | 0.0790  | _   | This paper   |  |
| 2441035.3040    | _       | PG       | -40340 | 0.1120  | _   | This paper   |  |
| 2445978.5260    | _       | PG       | -28382 | 0.0564  | _   | This paper   |  |
| 2448325.2590    | —       | PG       | -22705 | -0.0066 | _   | This paper   |  |
| 2448968.8893    | 0.0009  | V        | -21148 | -0.0181 | 33  | [6]          |  |
| 2448968.8908    | 0.0008  | В        | -21148 | -0.0179 | 33  | [6]          |  |
| 2449777.4712    | 0.0020  | V        | -19192 | -0.0206 | 15  | [39]         |  |
| 2451545.9359    | 0.0017  | V        | -14914 | -0.0240 | 99  | NSVS         |  |
| 2451574.4641    | —       | _        | -14845 | -0.0195 | _   | [7]          |  |
| 2451576.1082    | 0.0018  | V        | -14841 | -0.0289 | 63  | AAVSO        |  |
| 2451956.4280    | —       | —        | -13921 | -0.0248 | —   | [7]          |  |
| 2451958.4883    | 0.0019  | V        | -13916 | -0.0315 | 91  | AAVSO        |  |
| 2451963.4629    | —       | —        | -13904 | -0.0175 | —   | [7]          |  |
| 2452243.7151    | 0.0026  | V        | -13226 | -0.0415 | 115 | ASAS-3       |  |
| 2452925.3790    | 0.0026  | V        | -11577 | -0.0522 | 115 | ASAS-3       |  |
| 2452988.6221    | 0.0009  | V        | -11424 | -0.0572 | 44  | AAVSO        |  |
| 2453550.4314    | 0.0028  | V        | -10065 | -0.0404 | 115 | ASAS-3       |  |
| 2454010.1101    | 0.0016  | V        | -8953  | -0.0476 | 32  | INTEGRAL-OMC |  |
| 2454073.7800    | —       | _        | -8799  | -0.0393 | _   | [40]         |  |

| 2457745.1055                                                    | 0.0004 | V | 82   | -0.0007 | 318 | ASAS-SN |  |  |  |
|-----------------------------------------------------------------|--------|---|------|---------|-----|---------|--|--|--|
| 2458127.9028                                                    | 0.0004 | V | 1008 | 0.0006  | 378 | ASAS-SN |  |  |  |
| 2458366.8392                                                    | 0.0017 | V | 1586 | -0.0005 | 46  | ASAS-SN |  |  |  |
| 2458379.2390                                                    | 0.0006 | g | 1616 | -0.0034 | 54  | ASAS-SN |  |  |  |
| – <i>С</i> приведена на рис. 4. Неза- волов, соответствуют наиб |        |   |      |         |     |         |  |  |  |
|                                                                 |        |   |      |         |     |         |  |  |  |

Таблица 5. (Продолжение)

E

(4)

-8782

-8770

-8717

-8642

-8625

-8374

-6985

-6941

-6915

-5624

-5166

-5151

-5148

-5146

-4330

-4328

-4324

-3458

-3446

-3439

-3420

-3417

-3414

-1585

-778

Полоса

(3)

\_\_\_\_

\_

\_

V

\_

V

\_

V

 $I_c$ 

V

B

B

V

 $I_c$ 

\_

\_

V

B

 $I_c$ 

V

V

V

O - C,

сутки

(5)

-0.0388

-0.0475

-0.0430

-0.0420

-0.0405

-0.0267

-0.0317

-0.0290

-0.0258

-0.0257

-0.0205

-0.0219

-0.0212

-0.0144

-0.0110

-0.0179

-0.0166

-0.0160

-0.0007

N

(6)

\_ [41]

-0.0447 114 ASAS-3

\_ [42]

-0.0285 110 ASAS-3

\_

\_

63

37

27

63

\_

\_

-0.0281 238 AAVSO

51

68

42

0.0012 183 ASAS-SN

-0.0258 104 This paper

[40]

[40]

[41] \_

[41]

[43]

[44]

-0.0283 124 INTEGRAL-OMC

This paper

This paper

This paper

This paper

This paper

This paper

ASAS-SN

113 This paper

109 This paper

[45]

[45]

Источник

данных

(7)

Ошибка,

сутки

(2)

\_

0.0023

0.0021

0.0013

0.0007

0.0018

0.0007

0.0007

0.0007

0.0008

0.0049

0.0006

0.0006

0.0006

0.0023

0.0004

Эпоха максимума

(1)

2454080.8080

2454085.7600

2454107.6740

2454138.6790

2454145.7080

2454249.4639

2454823.6760

2454841.8631

2454852.6080

2455386.2936

2455575.6240

2455581.8315

2455583.0682

2455583.8962

2455921.2248

2455922.0491

2455923.7068

2456281.7030

2456286.6670

2456289.5437

2456297.4093

2456298.6532

2456299.8904

2457055.9899

2457389.5948

Диаграмма О – крашенные кружки ошибок, которые обычном меньше размеров сим-

гствуют наиболее надежным данным остатков О – С из таблицы 5 (опубликованная фотоэлектрическая фотометрия, наши собственные

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 74 № 2 2019

Таблица 6. Эфемериды DV Единорога

| Интервал дат JD | $T_0$ (HJD)               | Период (сутки)              |
|-----------------|---------------------------|-----------------------------|
| 2418000-2438000 | $2424704.1225 \pm 0.0090$ | $0.41339539 \pm 0.00000088$ |
| 2440000-2453500 | $2447012.3689 \pm 0.0042$ | $0.41338145 \pm 0.00000040$ |
| 2453500-2456500 | $2455941.4789 \pm 0.0004$ | $0.41339169 \pm 0.00000050$ |
| 2456500-2458400 | $2457711.2084 \pm 0.0004$ | $0.41338665 \pm 0.00000038$ |



**Рис. 4.** Диаграмма O - C для DV Единорога.



**Рис. 5.** Стандартные кривые блеска DV Единорога в  $\phi$ ильтрах B, V и  $I_c$ .

ПЗС наблюдения, ПЗС наблюдения из работы [39], а также наблюдения из каталогов ASAS-3 и ASAS-SN). Незакрашенные квадратики и точки соответствуют фотографическим эпохам максимумов блеска и прочим данным остатков O - C.

Диаграмму O - C (рис. 4) можно представить в виде последовательности четырех прямолинейных фрагментов и такое поведение свидетельствует о трех резких изменениях периода. В таблице 6 приведены элементы изменения блеска (эфемериды) для четырех интервалов времени. В последней строке приведены текущие значения элементов изменения блеска.

Следует иметь в виду, что в случае возможного просчета эпох в течение первых двух длительных перерывов между наблюдениями на рис. 4 данные в первых двух строках таблицы 6 могут оказаться ошибочными.

На основании наших ПЗС наблюдений было установлено, что максимум блеска в фильтре B достигается на 0.40003 раньше, чем в фильтре V, а максимум блеска в фильтре  $I_c$  достигается спустя 0.40022 после максимума блеска в фильтре V. Мы применили эти поправки при построении диаграммы O - C и построили эфемериду (таблица 6), которая такими образом относится к кривой блеска в фильтре V. Фазы кривой блеска (рис. 2), а также остатки O - C, представленные на рис. 4 и приведенные в таблице 5, рассчитаны по текущей эфемериде (последняя строка в таблице 6).

Отметим, что приведенные в этой статье результаты, касающиеся изменяемости периода, основаны на конкретных стандартных кривых блеска, которые мы приводим в таблице 7 (целиком эта таблица доступна в электронной версии статьи), чтобы их можно было использовать в будущих исследованиях для сравнения с нашими результатами (в случае применения исследователями других стандартных кривых). В таблице 7 приведены звездные величины DV Единорога в фильтрах B, Vи  $I_c$  для значений фаз с 0 до 0.995 с шагом 0.005; эти стандартные кривые блеска, основанные на результатах наших ПЗС наблюдений (таблица 1), графически представлены на рис. 5.

| Фаза  | В      | V      | $I_c$  | Фаза  | В      | V      | $I_c$  |
|-------|--------|--------|--------|-------|--------|--------|--------|
| 0.000 | 13.501 | 13.229 | 12.688 | 0.250 | 14.564 | 13.922 | 13.112 |
| 0.005 | 13.507 | 13.234 | 12.691 | 0.255 | 14.578 | 13.932 | 13.117 |
| 0.010 | 13.523 | 13.246 | 12.698 | 0.260 | 14.592 | 13.942 | 13.121 |
| 0.015 | 13.547 | 13.264 | 12.708 | 0.265 | 14.606 | 13.952 | 13.126 |
| 0.020 | 13.577 | 13.282 | 12.722 | 0.270 | 14.619 | 13.961 | 13.131 |
| 0.025 | 13.610 | 13.297 | 12.732 | 0.275 | 14.632 | 13.970 | 13.135 |
| 0.030 | 13.644 | 13.313 | 12.741 | 0.280 | 14.644 | 13.980 | 13.140 |
| 0.035 | 13.679 | 13.329 | 12.749 | 0.285 | 14.656 | 13.989 | 13.144 |
| 0.040 | 13.707 | 13.344 | 12.758 | 0.290 | 14.668 | 13.997 | 13.148 |
| 0.045 | 13.729 | 13.360 | 12.767 | 0.295 | 14.679 | 14.006 | 13.152 |
| 0.050 | 13.752 | 13.375 | 12.776 | 0.300 | 14.691 | 14.014 | 13.156 |
| 0.055 | 13.774 | 13.391 | 12.784 | 0.305 | 14.701 | 14.023 | 13.160 |
| 0.060 | 13.797 | 13.406 | 12.793 | 0.310 | 14.712 | 14.031 | 13.164 |
| 0.065 | 13.820 | 13.420 | 12.802 | 0.315 | 14.722 | 14.039 | 13.168 |
| 0.070 | 13.842 | 13.434 | 12.811 | 0.320 | 14.733 | 14.047 | 13.172 |
| 0.075 | 13.865 | 13.448 | 12.821 | 0.325 | 14.743 | 14.054 | 13.176 |
| 0.080 | 13.887 | 13.463 | 12.832 | 0.330 | 14.752 | 14.062 | 13.180 |
| 0.085 | 13.910 | 13.478 | 12.842 | 0.335 | 14.762 | 14.069 | 13.184 |
| 0.090 | 13.932 | 13.493 | 12.853 | 0.340 | 14.771 | 14.076 | 13.187 |
| 0.095 | 13.955 | 13.507 | 12.864 | 0.345 | 14.781 | 14.084 | 13.191 |
| 0.100 | 13.977 | 13.523 | 12.875 | 0.350 | 14.790 | 14.091 | 13.195 |
| 0.105 | 14.000 | 13.538 | 12.886 | 0.355 | 14.799 | 14.098 | 13.198 |
| 0.110 | 14.022 | 13.553 | 12.896 | 0.360 | 14.807 | 14.104 | 13.202 |
| 0.115 | 14.045 | 13.568 | 12.907 | 0.365 | 14.816 | 14.111 | 13.206 |
| 0.120 | 14.067 | 13.583 | 12.918 | 0.370 | 14.825 | 14.118 | 13.210 |
| 0.125 | 14.089 | 13.598 | 12.929 | 0.375 | 14.833 | 14.124 | 13.213 |
| 0.130 | 14.112 | 13.613 | 12.940 | 0.380 | 14.842 | 14.131 | 13.217 |
| 0.135 | 14.134 | 13.628 | 12.950 | 0.385 | 14.850 | 14.137 | 13.221 |
| 0.140 | 14.156 | 13.643 | 12.959 | 0.390 | 14.858 | 14.143 | 13.225 |
| 0.145 | 14.177 | 13.658 | 12.968 | 0.395 | 14.867 | 14.149 | 13.228 |
| 0.150 | 14.199 | 13.672 | 12.977 | 0.400 | 14.875 | 14.156 | 13.232 |
| 0.155 | 14.220 | 13.687 | 12.985 | 0.405 | 14.883 | 14.161 | 13.236 |
| 0.160 | 14.241 | 13.701 | 12.994 | 0.410 | 14.891 | 14.167 | 13.240 |
| 0.165 | 14.262 | 13.715 | 13.002 | 0.415 | 14.899 | 14.173 | 13.243 |

Таблица 7. Стандартные кривые блеска DV Единорога в фильтрах *B*, *V* и *I*<sub>c</sub>

### БЕРДНИКОВ и др.

Таблица 7. (Продолжение)

| Фаза  | В      | V      | $I_c$  | Фаза  | В      | V      | $I_c$  |
|-------|--------|--------|--------|-------|--------|--------|--------|
| 0.170 | 14.283 | 13.729 | 13.010 | 0.420 | 14.908 | 14.179 | 13.247 |
| 0.175 | 14.303 | 13.743 | 13.018 | 0.425 | 14.916 | 14.185 | 13.251 |
| 0.180 | 14.323 | 13.756 | 13.025 | 0.430 | 14.924 | 14.190 | 13.255 |
| 0.185 | 14.343 | 13.770 | 13.033 | 0.435 | 14.932 | 14.196 | 13.259 |
| 0.190 | 14.362 | 13.783 | 13.040 | 0.440 | 14.940 | 14.201 | 13.263 |
| 0.195 | 14.381 | 13.795 | 13.047 | 0.445 | 14.948 | 14.206 | 13.266 |
| 0.200 | 14.400 | 13.808 | 13.054 | 0.450 | 14.956 | 14.212 | 13.270 |
| 0.205 | 14.418 | 13.821 | 13.060 | 0.455 | 14.964 | 14.217 | 13.274 |
| 0.210 | 14.436 | 13.833 | 13.066 | 0.460 | 14.972 | 14.222 | 13.278 |
| 0.215 | 14.453 | 13.845 | 13.073 | 0.465 | 14.980 | 14.227 | 13.282 |
| 0.220 | 14.470 | 13.856 | 13.079 | 0.470 | 14.988 | 14.232 | 13.286 |
| 0.225 | 14.487 | 13.868 | 13.085 | 0.475 | 14.995 | 14.237 | 13.289 |
| 0.230 | 14.503 | 13.879 | 13.090 | 0.480 | 15.003 | 14.242 | 13.293 |
| 0.235 | 14.519 | 13.890 | 13.096 | 0.485 | 15.010 | 14.247 | 13.297 |
| 0.240 | 14.534 | 13.901 | 13.101 | 0.490 | 15.018 | 14.251 | 13.301 |
| 0.245 | 14.550 | 13.911 | 13.106 | 0.495 | 15.025 | 14.256 | 13.304 |
| 0.500 | 15.033 | 14.260 | 13.308 | 0.750 | 15.196 | 14.425 | 13.469 |
| 0.505 | 15.040 | 14.265 | 13.312 | 0.755 | 15.200 | 14.429 | 13.472 |
| 0.510 | 15.047 | 14.269 | 13.315 | 0.760 | 15.204 | 14.432 | 13.475 |
| 0.515 | 15.054 | 14.273 | 13.319 | 0.765 | 15.209 | 14.436 | 13.478 |
| 0.520 | 15.060 | 14.278 | 13.322 | 0.770 | 15.214 | 14.439 | 13.481 |
| 0.525 | 15.067 | 14.282 | 13.326 | 0.775 | 15.219 | 14.443 | 13.484 |
| 0.530 | 15.073 | 14.286 | 13.329 | 0.780 | 15.225 | 14.446 | 13.487 |
| 0.535 | 15.080 | 14.290 | 13.332 | 0.785 | 15.231 | 14.449 | 13.489 |
| 0.540 | 15.085 | 14.294 | 13.335 | 0.790 | 15.237 | 14.452 | 13.491 |
| 0.545 | 15.091 | 14.297 | 13.339 | 0.795 | 15.243 | 14.454 | 13.493 |
| 0.550 | 15.097 | 14.301 | 13.342 | 0.800 | 15.248 | 14.457 | 13.494 |
| 0.555 | 15.102 | 14.305 | 13.345 | 0.805 | 15.254 | 14.459 | 13.495 |
| 0.560 | 15.108 | 14.308 | 13.348 | 0.810 | 15.260 | 14.460 | 13.496 |
| 0.565 | 15.112 | 14.312 | 13.351 | 0.815 | 15.265 | 14.462 | 13.496 |
| 0.570 | 15.117 | 14.315 | 13.354 | 0.820 | 15.270 | 14.462 | 13.496 |
| 0.575 | 15.122 | 14.319 | 13.356 | 0.825 | 15.274 | 14.462 | 13.495 |
| 0.580 | 15.126 | 14.322 | 13.359 | 0.830 | 15.278 | 14.462 | 13.493 |
| 0.585 | 15.130 | 14.325 | 13.362 | 0.835 | 15.280 | 14.461 | 13.491 |

| Фаза  | В      | V      | $I_c$  | Фаза  | В      | V      | $I_c$  |
|-------|--------|--------|--------|-------|--------|--------|--------|
| 0.590 | 15.133 | 14.328 | 13.365 | 0.840 | 15.281 | 14.459 | 13.488 |
| 0.595 | 15.137 | 14.331 | 13.367 | 0.845 | 15.281 | 14.455 | 13.484 |
| 0.600 | 15.140 | 14.334 | 13.370 | 0.850 | 15.278 | 14.451 | 13.479 |
| 0.605 | 15.143 | 14.337 | 13.372 | 0.855 | 15.280 | 14.446 | 13.474 |
| 0.610 | 15.146 | 14.340 | 13.374 | 0.860 | 15.290 | 14.439 | 13.467 |
| 0.615 | 15.148 | 14.343 | 13.377 | 0.865 | 15.300 | 14.431 | 13.459 |
| 0.620 | 15.151 | 14.346 | 13.379 | 0.870 | 15.304 | 14.421 | 13.450 |
| 0.625 | 15.153 | 14.349 | 13.382 | 0.875 | 15.304 | 14.410 | 13.439 |
| 0.630 | 15.155 | 14.352 | 13.384 | 0.880 | 15.296 | 14.396 | 13.428 |
| 0.635 | 15.156 | 14.355 | 13.386 | 0.885 | 15.281 | 14.380 | 13.414 |
| 0.640 | 15.158 | 14.357 | 13.389 | 0.890 | 15.257 | 14.362 | 13.399 |
| 0.645 | 15.159 | 14.360 | 13.391 | 0.895 | 15.224 | 14.342 | 13.382 |
| 0.650 | 15.160 | 14.363 | 13.397 | 0.900 | 15.175 | 14.318 | 13.363 |
| 0.655 | 15.162 | 14.366 | 13.401 | 0.905 | 15.144 | 14.292 | 13.342 |
| 0.660 | 15.163 | 14.369 | 13.404 | 0.910 | 15.096 | 14.262 | 13.319 |
| 0.665 | 15.164 | 14.371 | 13.408 | 0.915 | 15.018 | 14.229 | 13.293 |
| 0.670 | 15.165 | 14.374 | 13.411 | 0.920 | 14.931 | 14.190 | 13.267 |
| 0.675 | 15.165 | 14.377 | 13.415 | 0.925 | 14.832 | 14.153 | 13.227 |
| 0.680 | 15.167 | 14.380 | 13.418 | 0.930 | 14.717 | 14.110 | 13.180 |
| 0.685 | 15.167 | 14.383 | 13.422 | 0.935 | 14.620 | 14.040 | 13.130 |
| 0.690 | 15.168 | 14.386 | 13.425 | 0.940 | 14.506 | 13.957 | 13.078 |
| 0.695 | 15.170 | 14.389 | 13.429 | 0.945 | 14.369 | 13.869 | 13.026 |
| 0.700 | 15.171 | 14.392 | 13.433 | 0.950 | 14.239 | 13.778 | 12.974 |
| 0.705 | 15.172 | 14.395 | 13.436 | 0.955 | 14.112 | 13.686 | 12.924 |
| 0.710 | 15.174 | 14.398 | 13.440 | 0.960 | 13.992 | 13.596 | 12.876 |
| 0.715 | 15.176 | 14.402 | 13.444 | 0.965 | 13.883 | 13.512 | 12.833 |
| 0.720 | 15.178 | 14.405 | 13.447 | 0.970 | 13.779 | 13.436 | 12.794 |
| 0.725 | 15.180 | 14.408 | 13.451 | 0.975 | 13.689 | 13.371 | 12.761 |
| 0.730 | 15.183 | 14.412 | 13.455 | 0.980 | 13.619 | 13.318 | 12.734 |
| 0.735 | 15.186 | 14.415 | 13.458 | 0.985 | 13.566 | 13.277 | 12.713 |
| 0.740 | 15.189 | 14.418 | 13.462 | 0.990 | 13.529 | 13.250 | 12.699 |
| 0.745 | 15.192 | 14.422 | 13.465 | 0.995 | 13.507 | 13.234 | 12.691 |

Таблица 7. (Продолжение)

### 6. ЗАКЛЮЧЕНИЕ

• Нами получены 635 ПЗС кадров в фильтрах *BVI*<sub>c</sub> области переменной типа RR Лиры АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 74 № 2 2019

(подтип ab) DV Единорога, вблизи которой на расстоянии 1"9 находится оптический компа-

ньон, яркость которого сравнима с яркостью DV Единорога в максимуме блеска. Наши наблюдения позволили впервые разрешить эту пару звезд и получить надежную фотометрию и координаты для обоих компонентов.

Мы построили диаграмму О – С для DV Единорога, охватывающую период времени длительностью 110 лет, что позволило выявить три резких изменения периода звезды, произошедших около JD 2438000, 2453500 и 2456500.

### БЛАГОДАРНОСТИ

В данной работе использовались наблюдения, выполненные на Южноафриканской обсерватории (SAAO), поддержанной Национальным научным фондом Южной Африки. В работе использовались данные проектов NSVS, ASAS-3, ASAS-SN и INTEGRAL-OMC, а также данные из Международной базы данных Американской ассоциации переменных звезд (AAVSO), полученные наблюдателями всего мира. Мы также благодарим астронома телескопа SALT д-ра Даниэль Н. Грюнвальд за помощь с наблюдениями на спектрографе HRS.

### ФИНАНСИРОВАНИЕ

Все спектральные наблюдения, приведенные в данной статье, выполнены на телескопе SALT (Southern African Large Telescope) в рамках программ 2015-2-SCI-043, 2016-1-MLT-003 and 2018-2-MLT-004 (рук. Алексей Князев). А. Ю. Князев благодарит Национальный научный фонд Южной Африки за поддержку. Это исследование поддержано Российским фондом фундаментальных исследований (гранты 18-02-00890 и 19-02-00611). Иван Катков благодарит Российский научный фонд (грант 17-72-20119) и Ведущую научную школу по астрофизике (направление внегалактическая астрономия) Московского государственного университета им. М.В.Ломоносова за поддержку.

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. L.N. Berdnikov, A.Yu. Kniazev, R. Sefako, et al., The Observatory **131**, 315 (2011a)
- 2. L.N. Berdnikov, A.Yu. Kniazev, R. Sefako, et al., The Observatory **131**, 386 (2011b)
- L.N. Berdnikov, A.K. Dambis, A.Yu. Kniazev, et al., The Observatory 134, 206 (2014)
- 4. C. Hoffmeister, Astron. Nachr. 259, 37 (1936)

- P. Ahnert, C. Hoffmeister, E. Rohlfs, et al., Veroeff. Sternwarte Sonneberg 1, 342 (1949)
- 6. A.C. Layden, PASP 109, 524 (1997)
- 7. M. Martignoni, J. Amer. Assoc. Var. Star Observers 32, 26 (2004)
- 8. A.W.J. Cousins, MemRAS 81, 25 (1976)
- L.N. Berdnikov, O.V. Vozyakova, A.Yu. Kniazev, et al., Astron. Rep. 56, 290 (2012)
- 10. D.G. Monet, S.E. Levine, B. Canzian, et al., AJ **125**, 984 (2003)
- 11. D. A. H. Buckley, G. P. Swart, J. G. Meiring, J.G., SPIE, 6267 (2006)
- 12. D. O'Donoghue et al. Monthly Notices Royal Astron. Soc., 372, 151 (2006)
- 13. S. I. Barnes et al., SPIE 7014, 70140K (2008)
- 14. D. G. Bramall, et al., SPIE 7735, 77354F (2010)
- 15. D. G. Bramall, et al., SPIE 8446, 84460A (2012)
- 16. L. A. Crause, et al., SPIE 9147, 91476T (2014)
- S. M. Crawford et al., in Silva D. R., Peck A. B., Soifer B. T., Proc. SPIE Conf. Ser. Vol. 7737, Observatory Operations: Strategies, Processes, and Systems III. SPIE, Bellingham, p. 773725 (2010)
- A. Kniazev, V. Gvaramadze & L. Berdnikov, MNRAS, 459, 3068 (2016)
- 19. A. Kniazev et al. (2019), in preparation
- 20. I. Katkov et al. (2019), in preparation
- 21. Coelho P. R. T., MNRAS, 440, 1027 (2014)
- 22. Gaia Collaboration, A. G. A. Brown, A. Vallenari, et al., Astron. and Astrophys., 616, 1 (2018)
- 23. X. Luri, A. G. A. Brown, L. M. Sarro, et al., Astron. and Astrophys., 616, 9 (2018)
- 24. J. C. Zinn, M. H. Pinsonneault, D. Huber, et al., arXiv:1805.02650 (2018)
- 25. A. G. Riess, S. Casertano, W. Yuan, et al., Astrophys. J., 861, 126 (2018)
- L. N. Yalyalieva, A. A. Chemel, E. V. Glushkova, A. K. Dambis, A. D. Klinichev, Astophys. Bull. 73, 335 (2018)
- 27. G. M. Green, E. F. Schlafly, D. P. Finkbeiner et al., ApJ **783**, 114 (2014)
- 28. G. M. Green, E. F. Schlafly, D. P. Finkbeiner et al., MNRAS **478**, 651 (2018)
- 29. A. K. Dambis, L. N. Berdnikov, A. Y. Kniazev, V. V. Kravtsov, A. S. Rastorguev, R. Sefako, O. V. Vozyakova, MNRAS **435**, 3206 (2013)
- 30. G. F. Benedict, B. E. McArthur, M. W. Feast et al., AJ 142, 187 (2011)
- 31. E. Hertzsprung, Astron. Nachr. 210, 17 (1919)
- L.N. Berdnikov, Soviet Astronomy Letters 18, 207 (1992)
- 33. G. Pojmanski, Acta Astron. 52, 397 (2002)
- 34. B.J. Shappee, J.L. Prieto, D. Grupe, et al., ApJ 788:48, (2014)
- 35. C.S. Kochanek, B.J. Shappee, K.Z. Stanek, et al., PASP **129**:104502 (2017)
- J. Alfonso-Garzon, A. Domingo, J.M. Mas-Hesse, et al., A&A 548, A79 (2012)
- 37. P.R. Wozniak, W.T. Vestrand, C.W. Akerlof, et al., AJ **127**, 2436 (2004)
- 38. S. Kafka, S., The AAVSO International Database. https://www.aavso.org.(2018)

- 39. E.G. Schmidt and A. Seth, AJ **112**, 2769 (1996)
- 40. J.F. Le Borgne, A. Klotz, M. Boer, IBVS №5767 (2007a)
- 41. J.F. Le Borgne, A. Klotz, M. Boer, IBVS №№5790 (2007b)
- 42. J.F. Le Borgne, A. Klotz, M. Boer, IBVS №5877 (2009a)
- 43. J.F. Le Borgne, A. Klotz, M. Boer, IBVS №5895 (2009b)
- 44. J.F. Le Borgne, A. Klotz, M. Boer, IBVS №6009 (2012)
- 45. J. F. Le Borgne, A. Klotz, and M. Boer, Inform. Bull. Variable Stars, № 6043 (2013).

### CCD Observations and Period Change of the Type ab RR Lyrae Star DV Mon

### L. N. Berdnikov, A. Yu. Kniazev, A. K. Dambis, V. V. Kravtsov, E. N. Pastukhova, and I. Y. Katkov

We took a total of 635 *B*-, *V*-, and  $I_c$ -band CCD frames for the RRab Lyr type variable DV Mon, which has a close bright visual companion with a separation of about 1.9". Observations were made with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) using SBIG CCD ST-10XME. For the first time, we obtained reliable separate PSF-photometry of both stars and determined their coordinates. We used all available data to construct the O - C diagram spanning a 110-year long time interval, which allowed us to reveal at least three sudden changes of the pulsation period around JD 2438000, 2453500, and 2456500. Our high resolution echelle spectra with the Southern African Large Telescope (SALT) showed that DV Mon belongs to type ab RR Lyrae variables of the Galactic thick disk.

Keywords: stars: variables: RR Lyrae